Augmented Lagrangian methods under the constant positive linear dependence constraint qualification
نویسندگان
چکیده
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.
منابع مشابه
A relaxed constant positive linear dependence constraint qualification and applications
In this work we introduce a relaxed version of the constant positive linear dependence constraint qualification (CPLD) that we call RCPLD. This development is inspired by a recent generalization of the constant rank constraint qualification from Minchenko and Stakhovski that was called RCR. We show that RCPLD is enough to ensure the convergence of an augmented Lagrangian algorithm and asserts t...
متن کاملDerivative-free methods for nonlinear programming with general lower-level constraints*
Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martínez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CP...
متن کاملA Feasible Augmented Lagrangian Method for Non-lipschitz Nonconvex Programming
We consider a class of constrained optimization problems where the objective function is a sum of a smooth function and a nonconvex non-Lipschitz function. Many problems in sparse portfolio selection, edge preserving image restoration and signal processing can be modelled in this form. First we propose the concept of the Karush-Kuhn-Tucker (KKT) stationary condition for the non-Lipschitz proble...
متن کاملAn Augmented Lagrangian Method for Non-Lipschitz Nonconvex Programming
We consider a class of constrained optimization problems where the objective function is a sum of a smooth function and a nonconvex non-Lipschitz function. Many problems in sparse portfolio selection, edge preserving image restoration and signal processing can be modelled in this form. First we propose the concept of the Karush-Kuhn-Tucker (KKT) stationary condition for the non-Lipschitz proble...
متن کاملGlobal Convergence of Augmented Lagrangian Methods Applied to Optimization Problems with Degenerate Constraints, Including Problems with Complementarity Constraints
We consider global convergence properties of the augmented Lagrangian methods on problems with degenerate constraints, with a special emphasis on mathematical programs with complementarity constraints (MPCC). In the general case, we show convergence to stationary points of the problem under an error bound condition for the feasible set (which is weaker than constraint qualifications), assuming ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 111 شماره
صفحات -
تاریخ انتشار 2008